
Artificial Intelligence for Real Time Threat
Detection and Monitoring

Steven W. Tolbert
Department of Computer and Electrical Engineering and Computer Science

Florida Atlantic University
Boca Raton, United States
stevenwtolbert@gmail.com

Abstract—This project attempts to design a novel method of
determining the threat level of a given operator in a conflict based
on audio and visual data. Work in the field of threat monitoring
and detection has shown the ability to detect weaponry within an
image; however, not much has been done in discerning the intent
of the wielder and their relative threat to an observer. This project
aims to solve this problem by developing a theoretical framework
for dynamically calculating a threat vector and observing it’s
trajectory as it moves through n-dimensional space.

I. INTRODUCTION

The current state of machine learning for threat detection
and monitoring is highly commercialized with the majority of
research being done behind closed doors and focused on the
objective of raw object detection. The question of if we can
detect a weapon in a given frame is not the objective of this
analysis, for this task one can look towards [1],[2],[3],[4]. It
will be taken as a given that weapon detection is a solved
procedure limited only by the scale of data; although, ad-
vancements can always be made we currently live in a time
where this task has become fairly trivial for well behaved
use-cases. The general question of understanding intent is a
much harder one. Current research, such as the work done
by private consulting firms [5] work towards this general goal
with respect to knives by not only detecting the presence of a
knife but how it is wielded by an operator. Beyond looking at
the problem from physically apparent features, threat detection
and intent has deep roots in neurocognitive research that can
be leveraged to create applicable intelligent systems for real-
time threat detection. Work done by [6] for example details
how important eyes are in the role of recognizing fear in an
individual. It is clear that threat detection and intent is a rich
problem with several angles to be explored bridging the state
of the art in artificial intelligence with the cutting edge research
being done in neurocognition.

A. A General Approach to Threat Monitoring and Detection

With that in mind, the practical building of this system
will now be considered. The threat detection and monitoring
system described in the next sections rely on an ensemble
of models being created. As stated previously, this project is

not designed to create the best weapon detector and as such
will simply leverage the state of the art in real-time object
detection as of December 2020 which will be YOLOv5 fine
tuned for our use cases. In the interest of conserving scope
we are also limiting our threat detection to threats where a
handgun can be seen, of course threats can come in wildly
different forms, and expanding this model for other threats
will be of interest for future research. After the model detects
a handgun in a frame, the model will create a new feature
vector based on the features seen in the frame. Questions such
as if a weapon is commonly found in this geography, what is
the angle of the weapon towards the observer, and are there
visible signs of distress in the wielder will become critical in
determining the intent of the wielder. The system designed
will also have access to the audio recorded during the video
which allows for the analysis and detection of hostile speech
in a given confrontation. The inclusion of audio presents
interesting challenges with tying a dynamic time dependent
feature with with a static frame. This can be done in theory
by actively transcribing audio into text and then performing
sentiment analysis on complete phrases with transformers such
as BERT [7] or the optimized version RoBERTa [8] which
drops next sentence prediction for better performance in other
tasks such as classification. One can then map the sentiment
result back to the current frame in time and create a more
robust and dynamic feature vector describing the frame. This
will be a goal of future iterations of this project; however, in
the interest of conserving scope this analysis will focus only on
visual data provided from the observer. The new feature vector
produced from the live frame is then plotted in N-dimensional
space where N depends on the number of models running.
Where a scenario exists in this space provides context into the
threat. The idea in general then is that threats to an observer
will exist in a different feature space than non-threats. For this
model to work a “threat-space” must be created from labeled
data and the difficultly lies in curating a set of models that
create a well segregated threat-space.

B. System Summery

The objective of threat detection and monitoring is to
understand when an observer should consider a given operator
as a threat. A threat will be defined as a person or thing that
intends to cause harm to an observer. To limit the scope of this
project we define a singular observer from the perspective of
the camera recording the data. For every confrontation there
exists several data points that help determine the credibility of
a perceived threat. These data points will be limited to visual
data continuously recorded during the confrontation and it is
the goal of this project to actively use these data points to
assess threat in real-time.

II. RELATED WORKS

It is the purpose of this work to develop a system for
threat detection and monitoring; however this purpose is rather
niche and the literature surrounding the topic is limited. To
zoom out on this goal and look at it from the view of
continuous classification through videos leads us to looking at
advancements that have been achieved through CNNs, RNNs,
and LSTMs; however, these models focus on the end-state of
the phenomena attempting to understand what label should be
assigned to a given frame based on the data present. Threat
modeling however requires an understanding of how scenarios
evolve as well as the current state. The vast majority of work
done in the field of modeling threats through AI concerns
itself with the preliminary goal of detecting a weapon. Such
research has yielded great results and advancements allowing
for detection in non-well behaved use cases such as detecting
a weapon under concealment [9] or under low-resolution
conditions [10]. However little has been done in understanding
intent and quantification of threat given a conflict scenario. The
work referenced in [5] comes closest to this goal by having the
models learn the difference between a wielded knife and one
sitting on a table for example. While works concerning itself
with threat detection is sparse, there is no shortage of literature
regarding the general goal of object detection which is used as
the primary step on our threat detection pipeline. For this task
we employ the use of the “You Only Look Once” (YOLO)
framework detailed in [1], specifically working with the latest
iteration YOLOv5. The YOLO architecture is an extremely
clever way of doing multiple object detection in a frame by
predicting the bounding boxes of objects belonging to defined
classes. This is done by first dividing the image into a NxN
grid, the model then learns if a grid cell contains an objects
and attempts to fit the anchor boxes to the detected object,
then non-max suppression is applied to determine the likely
object that should be classified within the bounding box in the
case when an object is detected multiple times. As an aside,
the version of YOLO we will be using, YOLOv5, has some
controversy surrounding its development as it’s technically not
a fork of the original YOLO iterations; however, performance
testing has shown that YOLOv5 performs at the fastest speeds
for real-time object detection and as such will be used for this
project.

III. MAIN BODY

As stated, the goal of this project is to understand threat
detection and monitoring. The ability to determine if an
operative should be considered a threat in real-time would pro-
vided limitless opportunities for building and designing safer
systems in practical applications. For this goal a new space
must be created in which features of non-threatening spaces
are clustered together while features of threatening spaces are
clustered together in a different area of N-dimensional space.

A. Threat Spaces
This task becomes challenging as your space is populated

from features derived from the models, therefore it becomes
a large and iterative process of trying different models and
model combinations to populate the space in a well separable
way that creates well defined clusters of threatening scenarios
and non-threatening scenarios.

B. Vector Mapping
For this task we will consider an ensemble of models

working in parallel, this allows for the work of large neural
networks doing separate tasks to be spread across multiple
devices. For every frame in the video we can create a feature
vector ~xi,t where i represents the video being mapped and t
represents the frame of that video.

Fig. 1. How a Single Frame is Mapped to high Threat-Space

The goal then is to design a set of models that create a well
divisible feature space in which high threat scenarios exist in
one region and low-threat scenarios exist in another region.

Fig. 2. How a Single Frame is Mapped to low Threat-Space

Possible models for creating this new threat-space include
models such as a YOLO object detector which can detect the
presence of weaponry in an image, or a model that is able to
understand the context of where the conflict is taking place, a
gun in the hands of a hunter for example shouldn’t create as
much threat as the gun in the hands of a criminal. By having
N different models on each frame we can then create a general
idea of context around images rather than making claims about
generalities.

C. Frames as Kinematic Objects

As this analysis using videos and not singular frames,
we can go beyond the base classification task and describe
how threat evolves in time. As every frame creates a time-
dependent dynamic feature vector this analysis will represent
this in general as:

~xi,t = a(i, t)x̂0 + b(i, t)x̂1 + · · ·+ c(i, t)x̂N (1)

Each directional unit vector corresponds to a different model
in the ensemble of models listed from model 0 to model N.
The coefficients of each directional unit vector represent the
output of that model for video i, at time t. It is possible to
create a dynamic representation of the video to not only can
we map the frame to feature space, but also see how it evolves
in time. It would make sense dynamic scenarios to follow
dynamic classifications, as threat is not a immutable variable
we should expect threat to rise and fall with respect to the
physical situation occurring in the conflict. As we essentially
have n-dimensional positions now, we could also consider
n-dimensional velocities and accelerations which poses an
interesting way of describing escalations and deescalation
in conflict. Consider the classic example of a bank robbery
where the bank robber will play the role of the operative. For
this scenario we would like to determine their threat. When
initially calculating threat of the operative, he/she would place
the operative into a feature space surrounded by low-threat
scenarios as they are likely to at first be concealing their
intent. As soon as the operative is revealed to be a robber
and begins audio and visual traits of high-threat scenarios
their feature vector will move in n-dimensional space. For
every frame calculated we will have a new n-dimensional
position vector. These position vectors can then be interpolated
to a well behaved function f(~xi,t) which provides a general
description of how threat evolves.

Fig. 3. How multiple frames can traverse threat-space

If the polynomial interpolation is well-behaved we can then
take first and second derivatives of our interpolated function

f(~xi,t) to produce a quantity of “threat-velocity” and “threat-
acceleration”.

ThreatPosition = f(~xi,t) (2)

ThreatV elocity = f ′(~xi,t) (3)

ThreatAcceleration = f ′′(~xi,t) (4)

The units for these values will be threat, threat per unit time
and threat per unit time squared respectively. For the case of
the operative robbing the bank while initially concealed, the
change in feature space would be large leading to large threat-
acceleration values. Considering threat in this manner allows
for interesting calculations to be yielded. Threat accelerations
and velocities for example can they be used to dynamically
calculate threat for multi-operative scenarios to determine
priority of target.

D. Parallel Deployment

As the models are computed in parallel, the feature vector
is able to be computed at each time step at the speed of
the slowest model. For real time prediction, models should
be tuned to produce results at the frame rate the camera
can provide, although such speeds are likely unobtainable
therefore what this analysis considers ”real-time” is real-time
in practicality with only slight latency between frame and
prediction. Deployment than can be done through many online
endpoints which are passed the frame of the video and returns
the result from the model the endpoint was designed for.
The main program will exist locally waiting for a response
from all endpoints and accumulate the results into the feature
vector representing that frame and stored into an array. The
next frame repeats the same process producing a new feature
vector representing the second frame. Once you have at least
two frames you can begin interpolating your points in N-
Dimensional space to create your trajectories.

E. Threat Trajectories

To help illustrate this idea we will construct the 1-D case
by first consider a three frame scenario where each frame
corresponds to t0, t1, and t2. For each frame we will calculate
a threat based on the 1 model we are running (as this
is the 1-D case) For further simplification we will restrict
the output of this model to a binary class either 0 or 1.
Passing each frame into the model would then produce a set
values (1 value per frame). Let us define these as follows:
x(t0) = 0, x(t1) = 1, x(t0) = 0 This kind of behavior would
correspond to an event occurring and then returning back to
the previous state within 3 frames. Plotting these points, we
can see that we are able to fit a parabola to this set of discrete
points x = 2t− t2.

From our interpolated function we can create the threat
velocity and acceleration

ThreatPosition = 2t− t2 (5)

ThreatV elocity = 2− 2t (6)

Fig. 4. x = 2t− t2

ThreatAcceleration = −2 (7)

One can also consider the linear behavior between singular
frames to see how threat increases in the first region from 0
to 1 and then decreases in the second region from 0 to 2. The
corresponding threat-velocity in region 1 is positive while the
corresponding threat-velocity in region 2 is negative. As our
interest is in real time analytic, we do not have the luxury of
fitting the entire curve to an analytic function. Therefore let
us consider how we can model the linear behavior between
frames to yield approximate results.

There are several methods of interpolating the curve numer-
ically including simple nearest-neighbor approaches or more
complex radial bias function interpolations. For this analysis
we will use a linear interpolation method to estimate the arc
length of the curve between frames. The kinematics are then
defined discretely using the estimated distance between frames
in feature space.

Recall how we defined a frame mathematically as a vector,
it is then possible to calculate an euclidean distance between
vectors as:

∆x =

√
[at+1 − at]2x̂0 + · · ·+ [zt+1 − zt]2x̂N (8)

~v =
∆x

∆t
(9)

~a =
∆v

∆t
(10)

Therefore for every frame we will be keeping track of its
position, its velocity, and its acceleration relative to the pre-
vious frame. As we are doing frame-by-frame calculations
for the threat kinematics, the above dependence on ∆t will
always be 1 as the time between frames is uniform under
ideal conditions. Practically if there are missing frames then
a more robust method of calculating ∆t is required.

F. Position Relative to Threat Cluster

The final requirement for this model to function is to un-
derstand position relative to the clusters. The vectors produced
in the previous step are almost meaningless if there is no
reference of what those objects are moving towards in N-
Dimensional space. Therefore we must make the assumption

that we have already created the clusters which have well de-
fined centers in N-Dimensional space. The angle our kinematic
vectors make with the vector pointing to the centers of each
threat-region tell us in what direction threat is evolving.

Fig. 5. Angle between a velocity vector and the two clusters.

It is then the case when the cos(θ) or cos(φ) is equal to zero
the kinematic vector is pointing in the direction of a cluster.

cos(θ) =
~v0 · ~c0
|~v0||~c0|

(11)

cos(φ) =
~v0 · ~c1
|~v0||~c1|

(12)

G. Manifolds

The work described provides a general framework for de-
scribing threat evolution in time; however, there is no memory
in the system. An operative can move from a low-threat space
into a high-threat space and then back into a low-threat space.
This circular scenario does properly describe threat evolution,
once a target becomes a threat in a conflict it shouldn’t be
able to easily loop back to a low-threat space.

Fig. 6. Threat loops.

A potential solution to this problem is the introductions of
dynamic manifolds in N-Dimensional spaces that effectively
change the distance between frames changing the kinematics
affecting threat velocity and threat acceleration. With the
introduction of manifolds, further work using Riemannian

geometry would need to be done in order to properly calculate
distances between frames in this new N-Dimensional space.
Once the system becomes critical by entering the high-threat
space it should be harder to escape the high-threat space and
return to a low-threat space. The inverse should also hold true,
if you exist in a low-threat space, slight grievances shouldn’t
rapidly accelerate your threat.

IV. EXPERIMENTS

In order to build the system proposed in the previous
sections we must first construct a set of models and then create
a local system to orchestrate the creation of the feature vectors
as well as the tracking of those vectors trajectories. The full
design involving many models of both audio and video type
data falls outside of the scope of this project due to the amount
of resources and time needed to create the full pipeline. It is
then the case we will concern ourselves with the 1-D version of
this problem which reduces the complexities of trajectories in
N-Dimensional to a simple line with a single variable driving
the trajectory. The most obvious choice in threat detection and
monitoring is then the presence of a weapon in the frame of
which we will restrict ourselves to the detection of handguns
in the frame. After we have built the handgun detector we
can then consider how threat will change in this 1-D space,
how we can interpolate the data in order to produce threat
velocities and accelerations as well as generalizing this model
for N-Dimnesional space.

A. Benchmarking Methodology

The obvious question next becomes how can we benchmark
this analysis. Considering that this project has only laid down
the theoretical foundations at this stage, most benchmarking
methods will not properly capture the full ability of the
models framework. Video classification essentially is image
classification over a set of images, therefore we can consider
the frameworks performance in terms of it’s ability to classify
threats in comparison to a simple binary image classifier.
However, a simple binary image classifier fails to capture
the time evolution component of videos. The introduction of
more complex networks involving CNNs, RNNs, and LSTMs
attempts to solve this problem allowing for continuous classi-
fication keeping track of what frames it’s already processed,
but it doesn’t quite describe the evolution of those frames, only
the end-state. Therefore, our ability to benchmark is somewhat
limited not only to the current models available but also due
to the fact we have restricted ourselves to the 1-D case for
this analysis in the interest of time and resources. As we are
restricted to the 1-D case the threat-space is simplified to a
binary space where the presence of a weapon would send us
to a high-threat region and therefore the operative is a threat
and an operative with no weapon would be sent to a low-threat
region where they would not be considered a threat. Under
such restrictions comparing the results of the 1-D framework
to a binary classifier would be comparable.

B. The Binary Threat Detector for Benchmarking

The most basic binary threat classifier would be a multi-
layer perceptron neural network trained on a set of images
divided into threats and non-threats. For this task the analysis
pulled 1000 images from the Open Images Dataset [12] resized
to 256x256 and converted to grayscale to be used as the non-
threat images. The model then used 1000 images from the
data set used to train the YOLO model which contain guns
being used in a threatening manner resized to 256x256 and
converted to grayscale to form the threat data. The binary
classifier threat model was trained and tested on the data
described with a 60/40 split. The architecture of the multi-
layer perceptron follows: 2 hidden layers with 50 hidden units
in the first layer and 10 hidden units in the second layer with a
logistic activation function. The performance of the model was
then tested through 5 fold cross validation and an aggregated
accuracy score is produced.

C. Benchmarking Results

The resulting cross validated accuracy score is 63% ± .13
what this tells us is that there are no well defined global
features that accurately represent threat in a given image and
the MLP is only able to perform slightly better than random
chance. Therefore our approach of using an ensemble of
models directly searching for various features that attribute
to threat should be able to provide much better results.

D. The Handgun Detector

The first task of this project was to train the YOLOv5
architecture to be able to detect handguns in images. This
project uses the largest pretrained model YOLOv5x to de-
termine the initial weights in which to start training from.
The rest of the configuration settings are mostly default: 50
epochs, 640 image size for both train and test sets, batch
size of 64. Larger batch sizes help improve training time
and can optimize convergence, but requires large amounts of
VRAM in order to fit on the GPU for a given epoch. It is
recommended to increase the number of epochs to improve
model performance; however, due to the scale of data being
used the number of epochs was limited due to budget and time.
The model was trained on an AWS Sagemaker ml.p2.8xlarge
server for several hours on a data set of 2986 images. The
data was split into training, validation, and testing sets with
70/20/10 split respectively. The data was sourced from a public
data set provided by the University of Grenada department
of Soft Computing and Intelligent Information Systems [11]
which contains the labeled 2986 handgun images including
bounding box annotations. These images were resized to
256x256 for uniformity while training and testing the model.
Further considerations were made in regard to this data set
as the YOLOv5 architecture the data must be formatted in
the YOLOv5 PyTorch format including a data.yaml file which
describes the classes you will be training for prediction.

E. Handgun Detector Training and Cross-Validation

The following figures show the loss related to both the
predicted bounding box and the loss related to the given
cell containing an object as well as their validation scores
displayed as Box and Objectiveness respectively. We can see
from these plots that the model is progressively learning
through every epoch.

Fig. 7. Loss Function Graphs for Bounding Boxes and Objectness respec-
tively.

Further metrics are computed in the form of precision,
recall, mAP@.5 and mAP@.5:.95. These metrics are defined
as follows:

precision =
TP

TP + FP
(13)

recall =
TP

TP + FN
(14)

mAP =
1

N

N∑
i=1

APi (15)

The resulting curves for these metrics are shown in figure
8 showing fairly high precision, recall, and mAP metrics. The
models architecture is summarized as having 484 layers and
88390614 trainable parameters.

Fig. 8. Metrics for Precsion, Recall, and mAP through training.

F. Handgun Detector Test Results

The model has shown promising results in training and
cross-validation, therefore we can now consider the test results
via the precision recall curve on the unseen test data using the
best weights trained from the model. Using the 587 images
in the test set which contains 687 targets (as a single image
could contain multiple handguns) the model was tested for
precision, recall, and mAP metrics.

Fig. 9. Precision Recall Curve of the YOLOv5x model tuned for Handgun
detection

Fig. 10. Examples of Handguns predicted in the Test Set

As we can see from the precision recall curve in figure
9 and the test images in figure 10, the model is able to
successfully detect the presence of a handgun in a image even
if the handgun is oriented in non-ideal ways, non traditionally
shaped, or including multiple handguns in the image. These
results can be summarized in the following table using the
results from the test set:

TABLE I
METRICS AS PERFORMED ON TEST DATA

Images Targets Precision Recall mAP@.5
Metrics 587 687 .803 .89 .905

G. 1-D Threat Measurement

The most trivial example of threat monitoring is in the
case of 1-dimension with no manifolds where each frame
only passes through one model producing a feature vector
that contains only a single value. The threat-space produced is
binary i.e. the presence of a weapon immediately would send
the operative into a high-threat region while no weapon would
send it to a low-threat region. Therefore threat measurement in
1-D would follow the same precision and recall metrics as the
YOLO model metrics described in the previous section. Threat
velocity and threat acceleration are also trivially obtained in

the 1-D case as going from 0 to 1 would yield a threat velocity
of 1 t

s and a threat acceleration of 1 t
s2

H. 1-D Threat Compared to General to MLP Results

The results provided show we are able produce classifica-
tions better than the slightly above random chance predictions
produced from the multi-layer perceptron. These results are
limited to the 1-D case where the threat-space is restricted
to to a binary space, next steps would involve expanding the
model to N-dimensions.

V. CONCLUSIONS

The research conducted shows how threat detection and
monitoring can be achieved by tracking trajectories of feature
vectors in N-dimensional space as well as provides a general
framework for completing this task in real-time by having
all models run in parallel and then concatenating the results
into one feature vector for each frame. The full study of
this methodology exceeds the scope of this project and can
not fully be explored under the current constraints of this
project. The research conducted can easily be expanded upon
by considering how multiple targets affect threat trajectories
as well expanding the model beyond the 1-D case into N-
Dimensional threat-space. While the primary goal of this
research was to model threat monitoring and detection, the
same methodology could be applied to other time-dependent
dynamic systems.

REFERENCES

[1] Joseph Redmon and Santosh Divvala and Ross Girshick and Ali Farhadi
“You Only Look Once: Unified, Real-Time Object Detection” 2016,
1506.02640, arXiv

[2] J.Santaquiteria, A.Velasco-Mata, N.Vallez, G.Bueno, J.Alvarez,
O.Deniz, “Handgun detection using combined human pose and weapon
appearance”2020, 210.13753, arXiv

[3] Alexander Egiazarov and Vasileios Mavroeidis and Fabio Massimo
Zennaro and Kamer Vishi “Firearm Detection and Segmentation Using
an Ensemble of Semantic Neural Networks” 2020, 2003.00805, arXiv

[4] Zhong Zhou and Isak Czeresnia Etinger and Florian Metze and Alexan-
der Hauptmann and Alexander Waibel “Gun Source and Muzzle Head
Detection” 2020, 20001.11120, arXiv

[5] David A. Noever and Sam E. Miller Noever “Knife and Threat Detec-
tors” 2020, 2004.03366, arXiv

[6] Elsherif, Mahmoud Medhat et al. “The perceptual saliency of fearful
eyes and smiles: A signal detection study.” 2017, PloS one vol. 12,3
e0173199, PloS

[7] Jacob Devlin and Ming-Wei Chang and Kenton Lee and Kristina
Toutanova “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding” 2019, 1810.04805, arXiv

[8] Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar
Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke
Zettlemoyer and Veselin Stoyanov “RoBERTa: A Robustly Optimized
BERT Pretraining Approach” 2019, 1907.11692, arXiv

[9] Blum, R., Xue, Z., Liu, Z., Forsyth, D. S. “Multisensor concealed
weapon detection by using a multiresolution mosaic approach” 2004,
VTC2004-Fall. 2004 (Vol. 7, pp. 4597-4601). IEEE, IEEE 60th Vehic-
ular Technology Conference

[10] Grega, M., Matiolański, A., Guzik P. ,Leszczuk, M. “Automated detec-
tion of firearms and knives in a CCTVimage.”, 2016, 16(1), 47., Sensors

[11] Olmos, R., Tabik, S., Herrera, F. “Automatic handgun detec-
tion alarm in videos using deep learning.”, 2018, 275, 66-72.
doi.org/10.1016/j.neucom.2017.05.012, Neurocomputing

[12] Krasin I., Duerig T., Alldrin N., Ferrari V., Abu-El-Haija S., Kuznetsova
A., Rom H., Uijlings J., Popov S., Kamali S., Malloci M., Pont-Tuset J.,
Veit A., Belongie S., Gomes V., Gupta A., Sun C., Chechik G., Cai D.,
Feng Z., Narayanan D., Murphy K. OpenImages: A public dataset for
large-scale multi-label and multi-class image classification, 2017. Avail-
able from https://storage.googleapis.com/openimages/web/index.html.

